skip to main content


Search for: All records

Creators/Authors contains: "Garrido-Menacho, Rita"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The original version of this Article contained an error in the second sentence of the second paragraph of the ‘Electrical properties of fluorinated graphene contacts’ section of the Results, which incorrectly read ‘The mobility was calculated by the Drude model,μ = ne/σwhereμ,n,e, andσare the carrier mobility, carrier density, electron charge, and sheet conductivity, respectively’. The correct version states ‘μ = σ/ne’ in place of ‘μ = ne/σ’. This has been corrected in both the PDF and HTML versions of the Article.

     
    more » « less
  2. Abstract

    Atomically precise fabrication methods are critical for the development of next-generation technologies. For example, in nanoelectronics based on van der Waals heterostructures, where two-dimensional materials are stacked to form devices with nanometer thicknesses, a major challenge is patterning with atomic precision and individually addressing each molecular layer. Here we demonstrate an atomically thin graphene etch stop for patterning van der Waals heterostructures through the selective etch of two-dimensional materials with xenon difluoride gas. Graphene etch stops enable one-step patterning of sophisticated devices from heterostructures by accessing buried layers and forming one-dimensional contacts. Graphene transistors with fluorinated graphene contacts show a room temperature mobility of 40,000 cm2 V−1 s−1at carrier density of 4 × 1012 cm−2and contact resistivity of 80 Ω·μm. We demonstrate the versatility of graphene etch stops with three-dimensionally integrated nanoelectronics with multiple active layers and nanoelectromechanical devices with performance comparable to the state-of-the-art.

     
    more » « less